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In this study, we develop a Markov Chain Monte Carlo method (MCMC) to estimate 
the hydraulic conductivity field conditioned on the direct measurements of hydraulic con- 
ductivity and indirect measurements of dependent variables such as hydraulic head for 
saturated flow in randomly heterogeneous porous media. The log hydraulic conductivity 
field is represented (parameterized) by the combination of some basis kernels centered at 
fixed spatial locations. The prior distribution for the vector of coefficients 0 are taken 
from a posterior distribution ~ ( 8 l d )  that is proportional to the product of the likelihood 
function of measurements d given parameter vector 8 and the prior distribution of 8. 
Starting from any initial setting, a partial realization of a Markov chain is generated by 
updating only one component of 8 at a time according to Metropolis rules. This en- 
sures that output from this chain has 7r(eld) as its stationary distribution. The posterior 
mean of the parameter 8 (and thus the mean log hydraulic conductivity conditional to 
measurements on hydraulic conductivity, and hydraulic head) can be estimated from the 
Markov chain realizations (ignoring some early realizations). The uncertainty associated 
with the mean filed can also be assessed from these realizations. In addition, the MCMC 
approach provides an alternative for estimating conditional predictions of hydraulic head 
and concentration and their associated uncertainties. Numerical examples for flow in a 
hypothetic random porous medium show that estimated log hydraulic conductivity field 
from the MCMC approach is closer to the original hypothetical random field than those 
obtained using kriging or cokriging methods. 

1. INTRODUCTION 

Aquifer characterization by inverse models has attracted extensive research in the last 
two decades [l-41. These groundwater inverse models may be classified into two groups: 
deterministic and stochastic models. In deterministic models, the aquifer is divided into 
a number of zones (with known boundaries) and regression-type techniques are used to 
adjust hydraulic properties of zones such that the modeled dependent variables (i.e., head 
and/or tracer data or concentrations) fit the measured values. 

In the stochastic framework, the geostatistical method has been extensively used for 
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solving inverse problems [5-131. In the cokriging method, the estimate of log hydraulic 
conductivity at any location is represented as a weighted linear combination of all mea- 
surements on log hydraulic conductivity and dependent variables(hydrau1ic head and/or 
concentration). The weights in this linear combination are solved from a set of so-called 
cokriging equations, and the coefficients in these cokriging equations are covariances and 
cross-covariances between the log hydraulic conductivity and dependent variables. The 
parameters that define the mean and the covariance structure of the log hydraulic con- 
ductivity can be evaluated using, for example, the maximum likelihood method [5], and 
the cross-covariance between log hydraulic conductivity and dependent variables can be 
derived by solving adjoint state equations [12] and assuming a linear relationship between 
perturbations of log hydraulic conductivity and these dependent variables. The cokriging 
method can be applied to transient flow, i.e, head measurements at  different times [12,14]. 
Harvey and Gorelick [13] presented a method for mapping the hydraulic conductivity field 
conditional to local direct measurements, hydraulic heads, and solute arrival time. The 
covariance matrices of head and arrival time are derived from linear approximations of the 
groundwater flow and transport. Unlike the deterministic approach, the cokriging method 
gives not only a mean prediction of log hydraulic conductivity (which is best linear unbi- 
ased estimator), but also an estimate of uncertainty associated with the mean prediction. 
Note that linearization is employed in the cokriging method in deriving cross-covariance 
functions between the perturbation of predictive variables (head, concentration, or travel 
time) and log hydraulic conductivity, while the relationship between log hydraulic conduc- 
tivity and these predictive variables are nonlinear. The dependent variables solved using 
the cokriged hydraulic conductivity field in general will not honor their corresponding mea- 
surements. Yeh and his coauthors [ 15-1 71 developed a cokriging-based linear successive 
iterative approach which allows one to sequentially update hydraulic properties such that 
the modeled head values are close to observed values with a prescribed error. Hughson 
and Gutjahr [14] investigated the effect of conditional transient groundwater simulations 
on time dependent head data by an iterative cokriging approach. Their major conclusion 
was that significantly more accuracy and detail is obtained in the estimation of Y field 
using head measurements at steady state and additional time-dependent head data add 
some improvement but the gains are less. 

The self-calibrated approach [18] is another geostatistical methodology for stochastic 
inverse modeling of groundwater flow. The method consists of two steps, generating a 
realization conditioned only on hydraulic conductivity measurements and adding a per- 
turbation to the realization such that it is also conditional to head observations. The 
latter was fulfilled by parameterizing the perturbation as a function of perturbations at a 
few selected master locations and minimizing a penalty function (an objective function) 
that reflects the difference between the simulated and measured heads. To ensure that 
the perturbated transmissivity field honors transmissivity measurements, the set of mas- 
ter points must include all transmissivity measurement locations. The perturbation of 
transmissivity is updated in an iterative manner. 

Woodbury and Ulrych [19] proposed a Bayesian approach to estimate transmissivity 
field from hydraulic head and transmissivity measurements for steady state flow. The 
parameters that govern the transmissivity field as a stochastic process are estimated using 
a maximum entropy method. 
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In this study, using the Markov Chain Monte Carlo method (MCMC), we develop an 
inverse model that accounts for both direct measurements of the log hydraulic conductivity 
and (steady state or transient) head measurements. The model has been tested for a two- 
dimensional saturated flow in a heterogeneous porous medium with variance 0; = 2.0. 

2. STATEMENT OF THE PROBLEM 

We consider transient water flow in saturated heterogeneous porous media satisfying 
the following continuity equation and Darcy's law: 

s.""7 t ,  + v q ( x ,  t )  = g(x ,  t ) ,  

subject to appropriate initial and boundary conditions. Here S, is the specific storage, 
h ( x , t )  is hydraulic head, q is the specific discharge (flux), g ( x 7 t )  is a source/sink term, 
and K , ( x )  is saturated hydraulic conductivity. In this study, we treat Y ( x )  = ln[K,(x)] 
as a random function with mean ( Y ( x ) )  and covariance function C y ( x , y ) .  We assume 
that there are ny measurements on log hydraulic conductivity Y ( x i ) ,  i = l , n y ,  and 
nh observation locations on hydraulic head measured at k different times. Now the 
problem we are facing is, given measurements Yo = (Y ( x l ) ,  - ,  Y ( x ~ ~ ) ) ~  and ho = 
(h(')(y1), . , h @ ) ( ~ , , ) ) ~ ,  how to obtain an estimate of the true hydraulic conductivity 
field such that it honors both direct and indirect measurements. In addition, we are also 
interested in estimating the uncertainty associated with the estimation. 

3. REPRESENTATION OF LOG CONDUCTIVITY FIELD Y ( x )  

Because the number of parameters (the number of nodes in discretization of the flow 
domain) being estimated in general is much larger than the number of measurements, pa- 
rameterization is employed here. The log hydraulic conductivity field Y ( x )  is represented 
by m basis kernels centered at  some fixed spatial locations xj, j = -, 

m 

j=1 
Y ( X )  = 0, q x ,  Xj). (3) 

Here the kernels can be chosen as, for example, an exponential function b ( x , x )  = 
exp[C$, (xi - X~)~/X:)], where d is the dimension of the domain D, and X i  is a parameter 
that controls the influence of the kernels in ith dimension. For the fixed basis kernels and 
given Xi, the estimation of the log hydraulic conductivity field Y ( x )  is computed from 
vector e = (e,, e a r . .  - , e,)'. 

4. BAYESIAN INFERENCE 

The essence of the Bayesian approach is Bayes' Theorem, which can be understood as 
a mathematical description of the learning process. Bayesian statistical inference requires 
a prior probability distribution for the parameters 8 = (01, - e ,  Om)', which embodies 
our judgment before seeing any data d = ( d l , .  - . , d,)T of how plausible it is that the 
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parameters could have values in the various regions of parameter space. The introduction 
of a prior is the crucial element that converts statistical inference into an application of 
probabilistic inference. When we combine a prior distribution .(e) for the parameters 
with the conditional distribution for the observed data we get a joint distribution for all 
quantities related to the problem: 

.(e, d )  = .rr(e)Tr(dle) = .(d).(ep). (4) 
From this one derives Bayed rule for the posterior distribution of the parameters given 
observed data d: 

.rr(Qld) Jqd/Q).(Q ( 5 )  
where L(d/O) is the likelihood function. For the problem described above, the likelihood 
function of observed data Yo and ho for the given parameters 8 can be written as 

where Y1 is a vector of the estimated log hydraulic conductivity values at the measurement 
points of Y ,  using (3) for given 8, hl is the solution of head at observation points of 
h, solved from flow equations (1)-(2) using the estimated Y field, Cy1 is an ny x ny 
matrix determined by observation errors and representativeness of measurements, 
is a ( k  n h )  x ( k  n h )  matrix accounting for observation errors and model discrepancies on 
head h. 

For Bayesian approach, we need to specify a prior distribution for 0. One such example 
is 

where A, is a hyperparameter, and i N j represents the set of pairwise adjacencies, matrix 
W is defined as 

-1 

0 otherwise, 

if i and j are adjacent, 

and ni is the number of neighbors to location i. The prior distribution for the hyperpa- 
rameter A, in (7) can be chosen as a Gamma distribution 

.(A,) c( A:-le-bXe. (9) 
Finally, the posterior distribution of parameters (e, A,) given observed data (YO, ho) 

can be written as 

.(e, AelYo, ho) W o ,  hole) x x(QIAe) x .(A,), (10) 

on which estimation and inference are based. Note that we only need to know the pos- 
terior distribution up to a constant proportionality for the Markov chain Monte Carlo 
simulations discussed in the next section. 
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5. MARKOV CHAIN MONTE CARLO SIMULATIONS 

Sampling methods based on Markov chains incorporate the required search aspect in 
a framework where it can be proved that the correct distribution is generated at  least in 
the limit as the length of the chain grows. Writing = (O?, - - , 8;))’ for the set of 
variables at step t the chain is defined by giving an initial distribution for e(’) and the 
transition probabilities for given the value for 8(t-1). These probabilities are chosen so 
that the distribution of converges to that for 8 as t increases and so that the Markov 
chain can feasibly be simulated by sampling from the initial distribution and then in 
succession from the conditional transition distributions. 

Typically the Markov chain explores the space in a ”local fashion”. In some methods, 
for example, differs from in only one com onent of the state, e.g., it may differ 
with respect to for some i but have Of) = Of1) for j # i .  Other methods may 
change all components at  once but usually by only a small amount. Locality is often 
crucial to the feasibility of these methods. In the Markov chain framework it is possible 
to guarantee that such step-by-step local methods eventually produce a sample of points 
from the globally correct distribution. The procedure implemented in this study can be 
summarized as follows 

1. Initialize parameters at some values (O,Xg)(O). Theoretically, vector 8 can be ini- 
tialized by any numbers. For example, one can initialize 8 by drawing a set of 
random numbers. In this study, we choose 8 such that the initial conductivity field 
computed from 8 is close to the kriged (or cokriged) field, i.e., choosing 8 satisfying 
B 8 = Ykriged, or 8 = (BTB)-lBTYkTiged, where B is a matrix whose components are 
defined by the kernel function b in (3). 

2. Update each Oi according to the Metropolis rules: 

0 Draw a value 8: from the uniform distribution U[Bi - T ,  Oi + T I ,  where T is a 
pre-determined small number. Let 8* be a vector that differs from 8 only in 
their ith component, i.e., replacing 8i in 8 by 8;. 

0 Compute a = “(8*,Xg1Yo,ho)/“(8,Xg(Yo,ho). Accept new value 8; (or e*) 
with probability min(1, a) ,  else reject new value 8; (i.e., keep t9i unchanged). 
In other words, if the newly proposed value increases the posterior probability 
(i.e., Q > l), the new value is accepted. Note that even if the proposed value 
reduces the posterior probability (i.e., a < l), the value could still be accepted 
with a probability of a. 

3. Update Xg given 8 according to the following posterior distribution of Xg, again using 
the Metropolis rules 

r(xgl8) o( r ( 8 I X g )  x “(A,) N r(a + ~$2,  b + eT w8/2), (11) 

where a and b are two prescribed constants. 

4. Repeat 2 and 3 until the chain converges. 

To reduce the possible effect of starting values, some early iterations (called burn-in 
period) are discarded. 
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Figure 1. Layout of the problem configura- 
tion. tivity field. 

Figure 2. Reference log hydraulic conduc- 

6. Numerical Examples 

In this section we demonstrate the proposed inverse method for the case of two- 
dimensional flow in a saturated heterogeneous porous medium. The flow domain is a 
square of a size L1 = Lz = 10 (where the unit is any consistent length unit), uniformly 
discretized into 20 x 20 square elements. The no-flow conditions are prescribed at two 
lateral boundaries. The hydraulic head is prescribed at the left and right boundaries 
as 10.5 and 10.0 , respectively, which produces a mean flow from the left to the right. 
Three wells (solid cycles) located at (9.0,3.0), (9,5.0), and (9.0,7.0), as shown in Figure 
1, pumping at deterministic rates of 0.3, 0.3 and 0.5, respectively. 

We first generate a random field using specified mean and covariance function (mean 
log hydraulic conductivity ( Y )  = (ln(K,)) = 0.0, variance 0; = 2.0, and an exponential 
covariance structure with a correlation length of X y  = 2.0)  and consider it as the “true” 
field (reference field, Fig. 2) that will be estimated later using the proposed inverse 
method. We take n y  = 5 samples from this field as direct measurements of log hydraulic 
conductivity (squares in Fig. 1). We then solve both steady state and transient flow 
equations using the true flow field to obtain both steady state and transient “true” head 
fields. For the steady state head field, we take head measurements at  n h  = 25 locations 
(ellipses in Fig. l), while for the transient flow we take head measurements at these 25 
locations at different elapsed times. 

After taking all these measurements, we pretend that the ensemble statistics (the mean, 
variance, and correlation length) used in generating the original Y field are not available 
any more and all we know are different kinds of measurements. Our purpose is to estimate 
the original hydraulic conductivity field using these measurements. As a first step, we 
may need to estimate sample statistics of the log hydraulic conductivity field. Several 
methods can be used to estimate the sample statistics (the mean, variance, and corm 
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Figure 3. Inversion results from MCMC using both direct measurement and steady state 
head measurements, (a) Contour maps of the estimated log hydraulic conductivity field 
and (b) scatter plot showing comparison with ture field. 
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Figure 4. Inversion results from cokriging using both direct measurements and steady 
state head measurements, (a) Contour maps of the estimated log hydraulic conductivity 
field and (b) scatter plot showing comparison with ture field. 
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Figure 5 .  Inversion results from MCMC using direct measurements and transient head 
measurements at three times, (a) Contour maps of the estimated log hydraulic conduc- 
tivity field and (b) scatter plot showing comparison with ture field. 

lation length) of the log hydraulic conductivity. The simpliest way is to compute the 
mean and the variance from direct measurements and find the correlation length by vari- 
ogram fitting. An alternative is to estimate these statistics from the maximum likelihood 
method using both direct and indirect measurements. In the Markov Chain Monte Carlo 
method (MCMC), these statistics can be estimated simultaneously in the inverse process. 
However, for simplicity and also for comparison with some other inverse methods (such 
as kriging or cokriging methods), in our preliminary study, we compute these statistics 
from direct measurements only. These estimates are (Y) = -0.739, 0; = 2.33, and a 
correlation length of Xy M 1.5. 

For the MCMC method, based on the domain size and the estimated correlation length 
of about 1.5, we use a grid of 6 x 6 basic kernels locations, more-or-less uniformly dis- 
tributed in the domain. The error matrices C y  and Ch are chosen to be eyInY and 
E&,, where I, stands for an identical matrix of n x n and E'S are prescribed standard 
deviations for errors of Y and h, respectively. Here we choose EY = 0.03 and ~h = 0.003. 
We tested the effect of the initial vector do) on the the final results by setting vector 
do) randomly or computing do) from the cokriged field and found that initializing do) 
using the cokriged field speeds up the convergence of the MCMC method, although two 
different initializations do not have significant impact on the final estimation. 

We design several numerical examples. In the first example, we use the direct measure- 
ments and steady state head measurements only. The estimated log hydraulic conductivity 
field from the MCMC method is illustrated in Figure 3a in the form of a contour map. 
Figure 3b is a scatter plot showing comparison between the true field and the estimated 
field. Closeness of these two fields is measured in vision by how close the data points to 
the 4 5 O  line. The red squares in the figure represent the values at 5 conditioning points. 
Comparing to the true field (Fig. 2), it is seen that the estimated field from the MCMC 
method not only captures the general structure of the original true field, but also contains 
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some local details. Note that the estimated values at the conditioning points deviate from 
the values at the conditioning points in the true field, because the specified measurement 
errors in the MCMC method allow the estimated values vary within some ranges. The 
degree of such deviations is characterized by the standard deviation of errors specified by 
EY. 

For the purpose of comparison with the proposed method, we obtain an inverse solu- 
tion using the cokriging method, where the unconditional mean and the unconditional 
exponential covariance structure (variance and correlation length) are taken from the 
sample statistics, the cross-covariance between head and log hydraulic conductivity is 
derived from first-order approximation of head perturbation, and the sensitivity of head 
perturbation to perturbation of log hydraulic conductivity is obtained from the adjoint 
method. 

Figure 4 illustrates the estimated field from the cokriging method. It is seen that, 
while the inversed field from cokriging also captures the general structure of the original 
field (see Fig. 2), it lacks local details and is much smoother than both the original field 
and the field derived from the MCMC method. The reason is that, in cokriging, the 
relationship between the perturbation of head and that of log hydraulic conductivity is 
linealized while in fact it is not. The MCMC method adds some non-linearity that is 
ignored in the cokriging method. 

In the second example, we use both direct measurements and transient head measure- 
ments taken at three elapsed times. We have tested the influence of different sets of 
elapsed times and found that measurements at early times have more important effect 
on inversion results. The reason is that, at the flow scenario as given in the example, 
the flow reaches the steady state condition very quickly, thus sets of head measurements 
taken at later times appear to be more correlated and information provided by these sets 
of measurements becomes less important. In this example, we take head measurements 
at t = 0.001, 0.1 and 1.0. The results are illustrated in Figure 5. The figure clearly 
shows that adding head measurements at early times has significantly improved inversion 
results. 

7. Summary and Conclusions 

In this study, using the Markov Chain Monte Carlo method (MCMC), we develop an 
inverse model that accounts for both direct measurements of the log hydraulic conductiv- 
ity and (steady state or transient) head measurements. The model has been tested for a 
two-dimensional saturated flow in a heterogeneous porous medium with a unconditional 
variance ci = 2.0. For an arbitrarily given statistics (the mean, variance, and correlation 
length) of log hydraulic conductivity, we generate a random field as the reference field, 
and then take both direct measurements from this field and (steady state and transient) 
head measurements solved from the reference field. The ensemble statistics (the mean, 
variance, and correlation length) of the field are estimated from these direct measure- 
ments and will be used in inverse modeling. It is demonstrated that the results from the 
MCMC method not only capture the structure of the reference field, but also reveal some 
local details. In addition, it seems that including transient head measurements makes 
significant improvements on inverse results. 
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